The Crystal Structure of $\mathbf{P u}_{31} \mathbf{P t}_{\mathbf{2 0}}$ and $\mathbf{P u}_{\mathbf{3 1}} \mathbf{R h}_{\mathbf{2 0}}{ }^{*}$

By Don T. Cromer and Allen C. Larson \dagger
University of California, Los Alamos Scientific Laboratory, Los Alamos, NM 87545, USA

(Received 5 October 1976; accepted 15 February 1977)

Abstract

$\mathrm{Pu}_{31} \mathrm{Pt}_{20}$ and $\mathrm{Pu}_{31} \mathrm{Rh}_{20}$ represent a new structural type for intermetallic compounds. The unit cell is tetragonal, space group $I 4 / \mathrm{mcm}$, with $Z=4$. For $\mathrm{Pu}_{31} \mathrm{Pt}_{20}, a=11.302$ (5), $c=37.388$ (23) \AA; for $\mathrm{Pu}_{31} \mathrm{Rh}_{20}$, $a=11.076$ (4),$c=36.933$ (12) \AA. This structure is closely related to the $\mathrm{W}_{5} \mathrm{Si}_{3}\left(D 8_{m}\right)$ structure type. Data were collected on an automatic diffractometer and were corrected for absorption. The structure was solved by direct methods and refinement was by full-matrix least squares. For $\mathrm{Pu}_{31} \mathrm{Pt}_{20}, R_{r^{*}}=0.0535$ for 775 observed reflections and for $\mathrm{Pu}_{31} \mathrm{Rh}_{20}, R_{w}=0.0425$ for 890 observed reflections. All interatomic distances are within the normal range.

Introduction

The $\mathrm{Pu}-\mathrm{Pt}$ phase diagram given by Kutaitsev, Chebotarev, Lebedev, Andrianov, Konev \& Menshikova (1965) shows five intermetallic compounds: $\mathrm{Pu}_{5} \mathrm{Pt}_{3}, \mathrm{PuPt}, \mathrm{PuPt}_{2}, \mathrm{PuPt}_{3}$ and PuPt_{5}. The above authors report that PuPt has the $\mathrm{CrB}\left(B_{f}\right)$ structure, PuPt_{2} has the $\mathrm{Cu}_{2} \mathrm{Mg}(C 15)$ structure, and PuPt_{3} has the $\mathrm{AuCu}_{3}\left(\mathrm{Ll}_{2}\right)$ structure. $\mathrm{Pu}_{5} \mathrm{Pt}_{3}$ has the $\mathrm{Mn}_{5} \mathrm{Si}_{3}$ or $D 8_{8}$ structure (Cromer \& Larson, 1975) and the structure of PuPt_{5} is still unknown. Roof (1976) has found that PuPt_{5} does not have the common CaCu_{5} structure. Roof (1976) has also found evidence for a compound believed to be $\mathrm{PuPt}_{4} \cdot \mathrm{Pu}_{31} \mathrm{Pt}_{20}$, the subject of the present paper, and PuPt_{4} were not found by Kutaitsev et al. (1965).
Kutaitsev et al. (1965) also reported the $\mathrm{Pu}-\mathrm{Rh}$ phase diagram. They found seven compounds: $\mathrm{Pu}_{2} \mathrm{Rh}$, $\mathrm{Pu}_{5} \mathrm{Rh}_{3}, \mathrm{Pu}_{5} \mathrm{Rh}_{4}, \mathrm{PuRh}$ and $\mathrm{Pu}_{3} \mathrm{Rh}_{4}$ all with unknown structures, and PuRh_{2} with the $\mathrm{Cu}_{2} \mathrm{Mg}$ structure and PuRh_{3} with the AuCu_{3} structure. The structure of $\mathrm{Pu}_{5} \mathrm{Rh}_{4}$ has been determined by Cromer (1977). In addition to the above compounds, $\mathrm{Pu}_{31} \mathrm{Rh}_{20}$ also exists and is isostructural with $\mathrm{Pu}_{31} \mathrm{Pt}_{20}$.

A preliminary account of the $\mathrm{Pu}_{31} \mathrm{Pt}_{20}$ structure was given by Cromer \& Larson (1974) at a meeting of the American Crystallographic Association. At that time the formula of the phase was thought to be $\mathrm{Pu}_{32} \mathrm{Pt}_{19}$, but further work suggested that the probable formula was $\mathrm{Pu}_{31} \mathrm{Pt}_{20}$. A written account of this work was delayed in the hope that an isostructural compound would be found with one of the lighter Group VIII elements, so that the ideal formulation could be definitively determined. Such a compound has now been found with rhodium.

[^0]
Alloy preparation

An alloy containing $37 \mathrm{at} . \% \mathrm{Pt}$ was prepared by arc melting six times and then heat treating for 73 h at $1100^{\circ} \mathrm{C}$. This alloy had been made with the intention of preparing $\mathrm{Pu}_{5} \mathrm{Pt}_{3} . \mathrm{Pu}_{5} \mathrm{Pt}_{3}$ crystals were indeed found but, in addition, crystals having a large tetragonal cell and later identified as $\mathrm{Pu}_{31} \mathrm{Pt}_{20}$ were also present. An alloy containing $37 \mathrm{at} . \% \mathrm{Rh}$ was similarly prepared and heat treated at $900^{\circ} \mathrm{C}$ for 100 h . Several fragments were examined and all had the large tetragonal cell similar to the platinum compound. Crystals of $\mathrm{Pu}_{5} \mathrm{Rh}_{3}$ were not found, but could well have been present.

Data collection and processing

We would like at this time to give in some detail the procedures now used in this laboratory for intensity measurement, averaging of equivalent reflections and determining the weight of the average.

Intensities are measured with an automated Picker diffractometer and local versions of the orientation, least-squares and data-collection programs of Busing, Ellison, Levy, King \& Roseberry (1968). A $\theta-2 \theta$ stepscan technique is used, usually with steps of 0.05° and a 2 s count for each step. The scan range is normally 2° (2 θ) plus the $a_{1}-a_{2}$ dispersion. Background is counted for 10 times the single step time at each end of the range and is assumed to vary linearly within the range. Graphite-monochromated Mo Ka radiation is normally used as the absorption coefficient of Pu for this radiation is lower than for any other convenient wavelength.

Heavy-metal intermetallic compounds present considerable problems because of high absorption and it is rare that a single-crystal fragment has a simple shape so that corrections can be accurately calculated.

Consequently we normally collect a very redundant set of intensities, both to check on absorption corrections and to improve the accuracy of the unique data set by averaging.

Some terms for a single observation of the reflection $h k l$ are defined: $I=$ raw intensity count; $B=$ background count; $C=1 /(\mathrm{Lp} \times t)$, where Lp is the Lorentz-polarization factor and t is the transmission factor; $F^{2}=C(I-B)=$ structure factor squared; $k=$ empirical constant combining systematic errors such as instrumental instability; $\sigma^{2}\left(F^{2}\right)=\left[C(I+B)+k^{2} F^{4}\right]=$ variance of $F^{2} ; s^{2}\left(F^{2}\right)=[C(I+B)]=$ variance of F^{2} due to counting statistics only; $T_{\text {min }}=$ threshold parameter for observed reflections; a reflection is considered observed if $F^{2} \geq T_{\min } \sigma\left(F^{2}\right)$. When n equivalent reflections are measured the weighted average, $\overline{F^{2}}$, is calculated as

$$
\begin{equation*}
\overline{F^{2}}=\sum_{i=1}^{n} \frac{F_{i}^{2}}{\sigma^{2}\left(F_{i}^{2}\right)} / \sum_{i=1}^{n} \frac{1}{\sigma^{2}\left(F_{i}^{2}\right)} . \tag{1}
\end{equation*}
$$

The variance of $\overline{F^{2}}$ is

$$
\begin{equation*}
\sigma^{2}\left(\overline{F^{2}}\right)=\frac{1}{\sum_{i=1}^{n} \frac{1}{s^{2}\left(F_{i}^{2}\right)}}+k^{2} \frac{\sum_{i=1}^{n} F_{i}^{4}}{n} . \tag{2}
\end{equation*}
$$

The average structure factor \bar{F} is $\left|\overline{F^{2}}\right|^{1 / 2}$ and $\sigma(\bar{F})=$ $\sigma\left(\overline{F^{2}}\right) /(2|F|)$. One can also estimate $\sigma^{2}\left(\overline{F^{2}}\right)$ from:

$$
\begin{equation*}
\sigma^{2}\left(\overline{F^{2}}\right)=\left[\frac{1}{n(n-1)} \sum_{i}^{n}\left(F_{i}^{2}-\overline{F^{2}}\right)^{2}\right] . \tag{3}
\end{equation*}
$$

In practice we compute $\sigma^{2}\left(\overline{F^{2}}\right)$ both ways and here have used the larger of the two in the manner of Corfield, Doedens \& Ibers (1967) to compute $w(\bar{F})$, the weight of $\bar{F}: w(\bar{F})=4 \bar{F}^{2} / \sigma^{2}\left(\bar{F}^{2}\right)$.

In the calculation of F^{2} all F_{i}^{2} are used, even though some might be accidentally negative. If $\overline{F^{2}}$ is less than $T_{\text {min }} \sigma\left(\bar{F}^{2}\right)$, then $\bar{F}=-\left[\left.T_{\text {min }} \sigma\left(F^{2}\right)\right|^{1 / 2}\right.$. The negative sign is a flag to omit this particular reflection in subsequent least-squares refinement. In the listings of observed and calculated structure factors the negative sign means that the observed quantity is less than the stated value.

The observed values of F^{2} and $\overline{F^{2}}$ are preserved and not set to a threshold value. In our procedure, if a leastsquares refinement is made which minimizes $\Sigma w\left(F_{\rho}^{2}-\right.$ $\left.F_{c}^{2}\right)^{2}$, all data are used at their observed values, even if accidentally negative.

In the program which averages the equivalent reflections, certain statistics are computed which give an indication of the overall agreement between equiva-
lent reflections. These are weighted sums over F and F^{2} and are defined below:

$$
\begin{align*}
& R_{F}=\sum_{j=1}^{N} \sum_{i=1}^{n_{j}} w\left(F_{i, j}\right)\left|\bar{F}_{j}-F_{i, j}\right| / \sum_{j=1}^{N} n_{j} w\left(\bar{F}_{j}\right) \bar{F}_{j}, \tag{4}\\
& R_{F}^{2}=\sum_{j=1}^{N} \sum_{i=1}^{n_{j}} w\left(F_{i, j}^{2}\right)\left|\overline{F_{j}^{2}}-F_{i, j}^{2}\right| / \sum_{j=1}^{N} n_{j} w\left(\overline{F_{j}^{2}}\right) \overline{F_{j}^{2}} . \tag{5}
\end{align*}
$$

In the above, the w 's are the appropriate $1 / \sigma^{2}$, and the summations are over the N unique reflections, each having been observed n_{j} times ($n_{j}>1$). Only observed data are used in these sums. These statistics are useful for assessing the validity of absorption corrections and R_{F} gives an estimate of the final $R_{w^{*}}$

Equation (2) is similar in form to that given by Abrahams (1964) in that the instrumental part of the variance of $\overline{F^{2}}$ is separated from the variance due to counting statistics. A derivation of equation (2) has been given by Ryan (1977).

Crystallographic data for the two compounds, and information pertinent to the data collection and reduction, are given in Tables 1 and 2. Preliminary precession photographs had shown that the space group, if centrosymmetric, is $I 4 / \mathrm{mcm}$. Reflections $h \mathrm{kl}$ were present only for $h+k+l=2 n$ and reflections $h 0 l$ were present only for $h=2 n$ and $l=2 n$. The reason for the smaller number of reflections for $\mathrm{Pu}_{31} \mathrm{Pt}_{20}$ is that some of the data were accidentally lost because of torn paper tapes and parity errors.

Absorption corrections were made both empirically (Furnas, 1957) and by the analytic method of de Meulenaer \& Tompa (1965). The latter corrections used a program obtained from Dr L. Templeton. The shape of the $\mathrm{Pu}_{31} \mathrm{Pt}_{20}$ crystal was approximated by seven plane faces, and six plane faces were used to approximate the shape of the $\mathrm{Pu}_{31} \mathrm{Rh}_{20}$ crystal. It can be seen in Table 2 that the empirical corrections, although not as good as the analytic corrections, do a reasonably good job. In fact it is not often that we have a crystal with a shape that can be defined well enough so that analytic corrections are better than empirical corrections. The data sets with analytic absorption corrections were those used in the final analyses.

Table 1. Crystallographic data for $\mathrm{Pu}_{31} \mathrm{Pt}_{20}$ and $\mathrm{Pu}_{31} \mathrm{Rh}_{20}$

Space group	$I 4 / \mathrm{mcm}$	$I 4 / \mathrm{mcm}$
$a(\lambda=0.70930 \AA)$	$11.302(5) \AA$	$11.076(4) \AA$
c	$37.388(23)$	$36.933(12)$
Z	4	4
$d_{\text {calc }}$	$15.73 \mathrm{~g} \mathrm{~cm}^{-3}$	$13.87 \mathrm{~g} \mathrm{~cm}^{-3}$
$d_{\text {meas }}$	15.55	
$\mu^{\text {(of ingot) }}$	$1127 \mathrm{~cm}^{-1}$	13.79
		$600 \mathrm{~cm}^{-1}$

Table 2. Data collection and reduction

	$\mathrm{Pu}_{31} \mathrm{Pt}_{20}$	$\mathrm{Pu}_{31} \mathrm{Rh}_{20}$
Radiation	Mo K (graphite-monochromated)	Mo Ka (graphite-monochromated)
2θ	50°	50°
Take-off angle	3°	3°
Step size	0.05°	0.05°
Step time	2 s	2 s
Scan range	2°	2°
$T_{\text {min }}$ (threshold parameter)	2.0	2.0
$\mathrm{N}^{\text {min }}$ mber of reflections	2852	4020
Unique reflections	1029	1113
Unique reflections observed	775	890
Reflections measured once	73	9
Reflections measured twice	451	198
Reflections measured three times	143	9
Reflections measured four times	362	897
R_{F} (no corrections)	0.099	0.085
R_{F} (empirical corrections)	0.047	0.045
R_{F} (analytic corrections)	0.031	0.039
Minimum transmission (analytic corrections)	0.020	0.078
Maximum transmission (analytic corrections)	0.172	0.222
Crystal volume	$0.120 \mathrm{~mm}^{3}$	$0.168 \mathrm{~mm}^{3}$

Determination of the structure

A geometric relation was first noted between the large tetragonal cell of the platinum compound and the tetragonal cell of $\mathrm{Pu}_{5} \mathrm{Ru}_{3}$ (Cromer, Larson \& Roof, 1975), a compound with about the same stoichiometry and with the same space group. The a axes are about the same and the c axes differ by a factor of about seven. The small cell has the $\mathrm{W}_{5} \mathrm{Si}_{3}$ or $D 8_{m}$ structure type and in this structure there are large atoms at $0, \frac{1}{2} \frac{1}{4}$ which are somewhat crowded. A model was tried having seven small cells stacked in the \mathbf{c} direction but with only 12 instead of 14 large atoms spread out along $0, \frac{1}{2}, z$. This model, based on an ordering of the disorder found in ($\mathrm{Pu}, \mathrm{Ce})_{5} \mathrm{Co}_{3}$ (Larson, Roof \& Cromer, 1964), did not refine.

We then applied direct methods, for the centrosymmetric space group $I 4 / \mathrm{mcm}$, and easily found the positions of all the atoms, but were uncertain which atom was in which site. In fact, least-squares refinements were about the same no matter how the sites were occupied, even if all atoms were called plutonium. After correction for anomalous dispersion, the Pu and Pt scattering factors differ by only 5 or 6% in the region which has most of the data. Consequently the behavior of thermal parameters could not be used to identify the site occupancy. (In retrospect, the final correct model did give a smaller sum of residuals than any other model.)
The atoms were then identified according to the number of neighbors in each site and by the relation of this structure to that of the small tetragonal cell. The atom at $0,0,0$ was first thought to be Pu but was later correctly identified as Pt.

About two years after most of the work on $\mathrm{Pu}_{31} \mathrm{Pt}_{20}$ was done, the same phase was found with rhodium. In this compound the difference in scattering power is so great that there is no ambiguity and the structure as originally deduced was shown to be correct.

Least-squares refinement, with anisotropic thermal parameters, led to the results shown in Tables 3 and 4.* Refinement minimized $\Sigma w(\Delta F)^{2}$ and used relativistic

[^1]Table 3. Final positional parameters for $\mathrm{Pu}_{31} \mathrm{Pt}_{20}$

	Equipoint	x	${ }^{\prime}$	z
$\mathrm{Pu}(1)$	$4(b)$	0	$\frac{1}{2}$	$\frac{1}{4}$
$\mathrm{Pu}(2)$	$8(g)$	0	$\frac{1}{2}$	$0 \cdot 0758$ (1)
$\mathrm{Pu}(3)$	$8(g)$	0	$\frac{1}{2}$	$0 \cdot 1655$ (1)
$\mathrm{Pu}(4)$	8(h)	$0 \cdot 1576$ (3)	$x+\frac{1}{2}$	0
$\mathrm{Pu}(5)$	32(m)	0.2964 (2)	0.4310 (2)	0.0509 (1)
$\mathrm{Pu}(6)$	32(m)	0.2851 (2)	0.5774 (2)	$0 \cdot 1336$ (1)
$\mathrm{Pu}(7)$	32(m)	$0 \cdot 2804$ (2)	0.4118 (2)	$0 \cdot 2123$ (1)
$\mathrm{Pt}(1)$	4(c)	0	0	0
Pt (2)	4(a)	0	0	$\frac{1}{4}$
Pt (3)	8(f)	0	0	0.0983 (1)
$\mathrm{Pt}(4)$	8(f)	0	0	$0 \cdot 1762$ (1)
$\mathrm{Pt}(5)$	8(h)	0.4021 (3)	$x+\frac{1}{2}$	0
$\mathrm{Pt}(6)$	16(l)	$0 \cdot 1825$ (2)	$x+\frac{1}{2}$	0.0742 (1)
$\mathrm{Pt}(7)$	16(l)	0.3416 (2)	$x+\frac{1}{2}$	$0 \cdot 1258$ (1)
$\mathrm{Pt}(8)$	$16(l)$	$0 \cdot 1549$ (2)	$x+\frac{1}{2}$	0.2101 (1)

Table 4. Final positional parameters for $\mathrm{Pu}_{31} \mathrm{Rh}_{20}$

	Equipoint	x	y	z
$\mathrm{Pu}(1)$	$4(b)$	0	$\frac{1}{2}$	4
$\mathrm{Pu}(2)$	$8(g)$	0	$\frac{1}{2}$	0.0756 (1)
$\mathrm{Pu}(3)$	8(g)	0	$\frac{1}{2}$	$0 \cdot 1656$ (1)
$\mathrm{Pu}(4)$	8(h)	0.1586 (1)	$x+\frac{1}{2}$	0
$\mathrm{Pu}(5)$	32(m)	0.2947 (1)	0.4299 (1)	0.0500 (1)
$\mathrm{Pu}(6)$	32(m)	0.2855 (1)	0.5774 (1)	0.1346 (1)
$\mathrm{Pu}(7)$	$32(\mathrm{~m})$	0.2819 (1)	0.4125 (1)	0.2114 (1)
Rh(1)	4(c)	0	0	0
$\mathrm{Rh}(2)$	4(a)	0	0	$\frac{1}{4}$
Rh(3)	$8(f)$	0	0	0.0940 (1)
Rh(4)	$8(f)$	0	0	0.1734 (1)
Rh(5)	8(h)	0.4035 (3)	$x+\frac{1}{2}$	0
Rh(6)	16(l)	$0 \cdot 1812$ (2)	$x+\frac{1}{2}$	$0 \cdot 0726$ (1)
$\mathrm{Rh}(7)$	$16(l)$	0.3417 (3)	$x+\frac{1}{2}$	$0 \cdot 1269$ (1)
Rh(8)	16(l)	$0 \cdot 1536$ (2)	$x+\frac{1}{2}$	$0 \cdot 2109$ (1)

Hartree-Fock scattering factors (Cromer \& Waber, 1974) and the anomalous-dispersion terms of Cromer \& Liberman (1970). $R=\Sigma|\Delta F| / \Sigma F_{o}$ and $R_{w}=$ $\left[\Sigma w(\Delta F)^{2} / \Sigma w F_{0}^{2}\right]^{1 / 2}$, with unobserved reflections omitted, were 0.0574 and 0.0535 for $\mathrm{Pu}_{31} \mathrm{Pt}_{20}$ and
0.0468 and 0.0425 for $\mathrm{Pu}_{31} \mathrm{Rh}_{20}$. The goodness of fit was 2.05 for the Pt compound and 1.55 for the Rh compound. No large or very anisotropic thermal parameters are present and thus no substitutional or positional disorder is indicated.

Discussion

$\mathrm{Pu}_{31} \mathrm{Pt}_{20}$ and $\mathrm{Pu}_{31} \mathrm{Rh}_{20}$ represent a new structure type but are closely related to $\mathrm{Pu}_{5} \mathrm{Ru}_{3}$, which has the $\mathrm{W}_{5} \mathrm{Si}_{3}$ ($D 8_{m}$) type. Fig. 1 shows one-half of the $\mathrm{Pu}_{31} \mathrm{Pt}_{20}$ cell and four cells of $\mathrm{Pu}_{5} \mathrm{Ru}_{3}$ projected along their y axes. Only half of the large cell need be shown as there is a mirror at $z=\frac{1}{2}$. The y coordinates are shown beside each circle. The atoms of $\mathrm{Pu}_{31} \mathrm{Pt}_{20}$ at $z=\frac{1}{4}$ and in the layers at either side of $z=\frac{1}{4}$ have virtually the same coordinates as those in $\mathrm{Pu}_{5} \mathrm{Ru}_{3}$. However, the smaller atoms in these layers are displaced slightly and are not coplanar with the large atoms as in $\mathrm{Pu}_{5} \mathrm{Ru}_{3}$. The second and third layers either side of $z=\frac{1}{4}$ in $\mathrm{Pu}_{31}, \mathrm{Pt}_{20}$ become progressively more distorted and the small atoms are further from the plane of the large atoms. The fourth

Fig. 1. The lower half of the figure shows $\frac{1}{2}$ of the $\mathrm{Pu}_{31} \mathrm{Pt}_{20}$ cell projected along y and the upper half shows four cells of $\mathrm{Pu}_{5} R \mathrm{R}_{3}$ projected along $v . x$ is vertical and z horizontal. The y coordinates are shown adjacent to each circle. The large circles are Pu and the small circles are the Group VIII elements.
layer, now at $z=0$, bears little relation to the original, small cell. The large cell has 16 fewer Pu atoms and four fewer Group VIII atoms than do seven of the small cells. In seven small cells there are 14 Pt atoms along $0,0, z$ and 14 Pu atoms along $0, \frac{1}{2}, z$. In the large cell there are 12 Pt atoms along $0,0, z$ (and $\frac{1}{2}, \frac{1}{2}, z$) and 10 Pu atoms along $0, \frac{1}{2}, z$ (and $\frac{1}{2}, 0, z$). The layers at $z=0, \frac{1}{2}$ in the large
cell have only 4 Pu atoms whereas the corresponding layers in the small cell have 8 Pu atoms. One Pt atom is added to the $z=0, \frac{1}{2}$ layers in the large cell.

The distances to the neighbors of each atom are given in Table 5 . No distances are unusually short. All $\mathrm{Pu}-\mathrm{Pu}$ and $\mathrm{Pu}-X$ distances are shorter in $\mathrm{Pu}_{31} \mathrm{Rh}_{20}$, but most of the $X-X$ distances are larger in this

Table 5. Interatomic distances (\AA) in $\mathrm{Pu}_{31} X_{20}$ compounds
The first distance is for $X=\mathrm{Pt}$ and the second for $X=\mathrm{Rh}$. Each pair is for structurally equivalent distances.

$\mathrm{Pu}(1)-2 \mathrm{Pu}(3)$	3.161 (5)	$3 \cdot 116$ (2)
$-8 \mathrm{Pu}(7)$	3.608 (2)	$3 \cdot 567$ (2)
$-4 X(8)$	$2 \cdot 890$ (3)	2.805 (3)
$\mathrm{Pu}(2)-\mathrm{Pu}(3)$	3.352 (7)	3.326 (3)
$-2 \mathrm{Pu}(4)$	3.791 (5)	3.737 (2)
$-4 \mathrm{Pu}(5)$	3.563 (3)	3.486 (2)
$-4 \mathrm{Pu}(6)$	4.039 (4)	3.936 (2)
$-2 X(5)$	$3 \cdot 237$ (5)	3.174 (3)
$-2 X(6)$	2.918 (3)	2.841 (4)
$-2 X(7)$	$3 \cdot 147$ (5)	3.121 (4)
$\mathrm{Pu}(3)-\mathrm{Pu}(1)$	$3 \cdot 161$ (5)	$3 \cdot 116$ (2)
$-\mathrm{Pu}(2)$	$3 \cdot 352$ (7)	3.326 (3)
$-4 \mathrm{Pu}(6)$	3.509 (3)	3.470 (2)
$-4 \mathrm{Pu}(7)$	3.756 (3)	3.680 (2)
$-2 X(7)$	2.934 (4)	2.862 (4)
$-2 X(8)$	2.986 (4)	2.930 (4)
$\mathrm{Pu}(4)-2 \mathrm{Pu}(2)$	3.791 (5)	3.737 (2)
$-4 \mathrm{Pu}(5)$	3.555 (3)	3.478 (2)
$-4 \mathrm{Pu}(5)$	3.666 (4)	3.564 (2)
$-2 X(1)$	4.260 (2)	4.169 (2)
$-2 X(5)$	2.965 (4)	2.909 (4)
$-X(5)$	3.909 (6)	3.835 (6)
$-2 X(6)$	2.803 (4)	2.706 (3)
$\mathrm{Pu}(5)-\mathrm{Pu}(2)$	3.563 (3)	3.486 (2)
$-\mathrm{Pu}(4)$	3.555 (3)	3.478 (2)
$-\mathrm{Pu}(4)$	3.666 (4)	3.564 (2)
$-2 \mathrm{Pu}(5)$	3.436 (3)	3.398 (2)
$-\mathrm{Pu}(5)$	3.634 (4)	3.518 (3)
$-\mathrm{Pu}(5)$	3.805 (5)	3.692 (2)
$-\mathrm{Pu}(6)$	3.608 (3)	3.529 (2)
$-\mathrm{Pu}(6)$	3.875 (3)	3.787 (2)
$-X(1)$	3.086 (2)	3.030 (1)
$-X(3)$	3.007 (4)	2.900 (3)
$-X(5)$	2.960 (3)	2.883 (3)
$-X(6)$	2.950 (3)	2.891 (3)
$-X(6)$	3.240 (3)	3.167 (2)
$-X(7)$	3.361 (4)	3.363 (3)
$\mathrm{Pu}(6)-\mathrm{Pu}(2)$	4.039 (4)	3.936 (2)
${ }_{-\mathrm{Pu}}(3)$	3.509 (3)	3.470 (2)
$-\mathrm{Pu}(5)$	3.608 (4)	3.529 (2)
$-\mathrm{Pu}(5)$	$3 \cdot 875$ (3)	3.787 (2)
$-\mathrm{Pu}(6)$	3.320 (4)	3.260 (3)
$-2 \mathrm{Pu}(6)$	3.651 (3)	3.572 (2)
$-\mathrm{Pu}(7)$	3.395 (3)	3.372 (2)
$-\mathrm{Pu}(7)$	3.557 (3)	3.527 (2)
$-X(3)$	2.952 (4)	2.939 (3)
$-X(4)$	2.977 (4)	2.903 (3)
$-X(6)$	2.862 (4)	$2 \cdot 811$ (3)
$-X(7)$	3.052 (3)	2.980 (2)
$-X(7)$	3.080 (4)	3.007 (4)
$-X(8)$	3.239 (4)	3.283 (3)

$\mathrm{Pu}(7)-\mathrm{Pu}(1)$	3.608 (2)	$3 \cdot 567$ (2)
-Pu(3)	3.756 (3)	$3 \cdot 680$ (2)
$-\mathrm{Pu}(6)$	3.395 (3)	$3 \cdot 372$ (2)
$-\mathrm{Pu}(6)$	3.557 (3)	$3 \cdot 527$ (2)
$-\mathrm{Pu}(7)$	3.072 (4)	$3 \cdot 045$ (2)
$-\mathrm{Pu}(7)$	3.451 (5)	3.449 (2)
$-\mathrm{Pu}(7)$	3.514 (5)	3.510 (2)
$-2 \mathrm{Pu}(7)$	3.783 (3)	3.681 (2)
$-X(2)$	3.023 (2)	2.968 (1)
$-X(4)$	2.996 (3)	2.956 (2)
$-X(7)$	3.605 (5)	3.496 (3)
$-X(8)$	2.996 (3)	2.956 (3)
$-X(8)$	3.093 (3)	3.025 (2)
$-X(8)$	3.315 (4)	3.285 (3)
$X(1)-4 \mathrm{Pu}(4)$	4.260 (2)	4.169 (2)
$-8 \mathrm{Pu}(5)$	3.086 (2)	3.030 (1)
$-2 X(3)$	3.675 (6)	3.470 (5)
$X(2)-8 \mathrm{Pu}(7)$	3.023 (2)	2.968 (1)
$-2 X(4)$	2.759 (6)	2.828 (4)
$X(3)-4 \mathrm{Pu}(5)$	3.007 (4)	2.900 (3)
$-4 \mathrm{Pu}(6)$	2.952 (4)	2.939 (3)
$-X(1)$	3.675 (6)	3.471 (5)
$-X(4)$	2.913 (8)	2.934 (6)
$X(4)-4 \mathrm{Pu}(6)$	2.977 (4)	2.903 (3)
$-4 \mathrm{Pu}(7)$	2.996 (3)	2.956 (2)
$-X(2)$	2.759 (6)	2.828 (4)
$-X(3)$	2.913 (8)	2.934 (6)
$X(5)-2 \mathrm{Pu}(2)$	3.237 (5)	$3 \cdot 174$ (3)
$-2 \mathrm{Pu}(4)$	2.965 (4)	2.909 (4)
$-\mathrm{Pu}(4)$	3.909 (6)	3.835 (6)
$-4 \mathrm{Pu}(5)$	2.960 (3)	2.883 (3)
$-X(5)$	$3 \cdot 129$ (9)	3.024 (10)
$X(6)-\mathrm{Pu}(2)$	2.918 (3)	2.841 (4)
$-\mathrm{Pu}(4)$	2.803 (4)	2.706 (3)
$-2 \mathrm{Pu}(5)$	2.950 (3)	2.891 (3)
$-2 \mathrm{Pu}(5)$	3.240 (3)	$3 \cdot 167$ (2)
$-2 \mathrm{Pu}(6)$	2.862 (4)	2.811 (3)
$-X(7)$	3.192 (5)	3.215 (5)
$X(7)-\mathrm{Pu}(2)$	$3 \cdot 147$ (5)	$3 \cdot 121$ (4)
$-\mathrm{Pu}(3)$	2.934 (4)	2.862 (4)
$-2 \mathrm{Pu}(5)$	3.361 (4)	3.363 (3)
$-2 \mathrm{Pu}(6)$	3.052 (3)	2.980 (2)
$-2 \mathrm{Pu}(6)$	3.080 (4)	3.007 (4)
$-2 \mathrm{Pu}(7)$	3.605 (5)	3.496 (3)
$-X(6)$	$3 \cdot 192$ (5)	$3 \cdot 215$ (5)
$-X(8)$	4.341 (5)	4.279 (5)
$X(8)-\mathrm{Pu}(1)$	2.890 (3)	2.805 (3)
$-\mathrm{Pu}(3)$	2.986 (4)	2.930 (4)
$-2 \mathrm{Pu}(6)$	3.239 (4)	3.283 (3)
$-2 \mathrm{Pu}(7)$	2.996 (3)	2.956 (3)
$-2 \mathrm{Pu}(7)$	3.093 (3)	3.025 (2)
$-2 \mathrm{Pu}(7)$	3.315 (4)	3.285 (3)
$-X(7)$	4.341 (5)	4.279 (5)
$-X(8)$	$4 \cdot 260$ (6)	$4 \cdot 179$ (7)

Fig. 2. One-half the unit cell of $\mathrm{Pu}_{31} \mathrm{Rh}_{20}$, from $z=0$ to $z=\frac{1}{2}$. The view vector is approximately along x. The origin is at the lower left rear. Polyhedra shown are $\mathrm{Pu}(1)$ at $\frac{1}{2}, 0, \frac{1}{4}$ on the left, $\mathrm{Pu}(4)$ at $0.659,0 \cdot 841,0$ at the bottom right and $\mathrm{Pu}(5)$ at $0 \cdot 795,0 \cdot 930,0 \cdot 450$ at the top.

Fig. 3. $\mathrm{Pu}(2)$ at $\frac{1}{2}, 0,0 \cdot 076$ is the lower polyhedron and $\mathrm{Pu}(3)$ at $\frac{1}{2}, 0,0 \cdot 334$ is the upper polyhedron.

Fig. 4. $\mathrm{Pu}(6)$ at $0 \cdot 786,0 \cdot 923,0 \cdot 135$ (lower) and $\mathrm{Pu}(7)$ at $0 \cdot 282,0 \cdot 588,0 \cdot 289$ (upper).
compound. If the midpoint between two atoms is closer to these two atoms than to any other atom, the two atoms are defined as neighbors. This definition of neighbor is, in effect, the same as that given by Frank \& Kasper (1958) who define as neighbors two atoms which share a common domain face. The convex
polyhedra formed by these neighbors are shown in Figs. 2-7.

In the following discussion we will refer to M and X as in $M_{31} X_{20} . M(1)$ and $M(3)$ have four X and twelve M neighbors. A distorted hexagon of four M and two X atoms is on either side of the central M atom in an

Fig. 5. $\mathrm{Rh}(1)$ at $\frac{1}{2}, \frac{1}{2}, 0$ (lower), $\mathrm{Rh}(2)$ at $\frac{1}{2}, \frac{1}{2}, \frac{1}{4}$ (middle) and $R h(3)$ at $\frac{1}{2}, \frac{1}{2}, 0 \cdot 406$ (upper).

Fig. 6. $\mathrm{Rh}(4)$ at $\frac{1}{2}, \frac{1}{2}, 0 \cdot 173$ (lower) and $\mathrm{Rh}(6)$ at $0 \cdot 819,0 \cdot 681,0 \cdot 427$ (upper).

Fig. 7. $\mathrm{Rh}(5)$ at $0 \cdot 903,0 \cdot 597,0$ (lower), $\mathrm{Rh}(7)$ at $0 \cdot 658,0 \cdot 842,0 \cdot 373$ (upper) and $\mathrm{Rh}(8)$ at $0 \cdot 846,0 \cdot 346,0 \cdot 211$ (middle).
antiprism configuration and each hexagon is capped by another M neighbor. The $M(1)$ polyhedron is exactly like $\mathrm{Pu}(1)$ in the $\mathrm{Pu}_{5} \mathrm{Ru}_{3}\left(D 8_{m}\right)$ structure, but for $M(3)$, which has a lower point symmetry, the two hexagonal rings and the caps are not equidistant. Nevertheless these two polyhedra are topologically the same. M (2) is further away from $z=\frac{1}{4}$ where the structure is most like that of the $D 8_{m}$ type. $M(2)$ again has two hexagonal rings on either side but while the top ring is capped by a single M atom the lower ring is capped by four atoms. $M(2)$ has eleven M and six X neighbors.
$M(4)$ has seven X and ten M neighbours. These are arranged in threc pentagonal layers, one X atom coplanar with $M(4)$ at $z=0$, and two layers of M atoms above and below. This complex is capped with X atoms at each end.
$M(5), M(6)$ and $M(7)$, which are in general positions, each have six X and nine M neighbors and the polyhedra are similar to that of $\mathrm{Pu}(2)$ in $\mathrm{Pu}_{5} \mathrm{Rh}_{3}$ in terms of the number and kinds of neighbors. The M (6) and $M(7)$ polyhedra can be described as formed by a somewhat puckered ring of six atoms on either side of the central atom, with one ring being capped by one atom and the other ring capped by two atoms. The polyhedron of $M(5)$ is not easily described. However, there is a puckered ring of six atoms approximately coplanar with $M(5)$. On one side is a puckered ring of four atoms and on the other side a planar array of four atoms with this plane capped by a single atom.
$X(1)$ has two X and twelve M neighbors. Eight M neighbors are at the corners of a cube, four more M neighbors are coplanar with $M(1)$ at $z=0$ and two X neighbors cap this arrangement. $X(2), X(3)$ and $X(4)$ each have two X and eight M neighbors and are like $\mathrm{Ru}(1)$ in $\mathrm{Pu}_{5} \mathrm{Ru}_{3}$. The eight M neighbors form an antiprism and the X atoms cap the ends of this antiprism. $X(5)$ has a similar polyhedron but only one of the end atoms is X so that there are nine M neighbors and one $X . M(6)$ has one X and eight M neighbors which form a somewhat distorted antiprism with the Pt atom at one end. $M(7)$ and $M(8)$ have two X and ten M neighbors which form somewhat distorted icosohedra.

We wish to thank Dr R. R. Ryan for many helpful discussions concerning the averaging of equivalent reflections, and V. O. Struebing for preparation of the alloys.

Addendum: - A recent paper by Moreau, Paccard \& Parthé (1976) on the structure of $\mathrm{Y}_{3} \mathrm{Rh}_{2}$ has just come to our attention. $\mathrm{Y}_{3} \mathrm{Rh}_{2}$ has a structure closely related to that of $\mathrm{Pu}_{5} \mathrm{Ru}_{3}$ and the present structure. To see the relation between $\mathrm{Y}_{3} \mathrm{Rh}_{2}$ and $\mathrm{Pu}_{31} \mathrm{Rh}_{20}$, look again at Fig. 1. The arrangement at $z=\frac{1}{4}$ and the first layer on
either side of $z=\frac{1}{4}$ is virtually identical in these two structures and in the parent small cell. In the second layer from $z=\frac{1}{4}$: in $\mathrm{Pu}_{31} \mathrm{Rh}_{20}$ the smaller atoms are displaced away from $z=\frac{1}{4}$ and in $\mathrm{Y}_{3} \mathrm{R} h_{2}$ the smaller atoms are displaced toward $z=\frac{1}{4}$. The third layer from $z=\frac{1}{4}$, which is in the $\mathrm{Pu}_{31} \mathrm{Rh}_{20}$ structure, does not exist in $\mathrm{Y}_{3} \mathrm{Rh}_{2}$. The next layers, at $z=0$ and $z=\frac{1}{2}$, are interchanged in $\mathrm{Y}_{3} \mathrm{Rh}_{2}$. That is, the $z=0$ layer in $\mathrm{Pu}_{31} \mathrm{Rh}_{20}$ is virtually identical with the $z=\frac{1}{2}$ layer in $\mathrm{Y}_{3} \mathrm{Rh}_{2}$. In effect, eight units of $M_{5} X_{3}$ (two unit cells) have been removed from the $M_{31} X_{20}$ cell, leaving 28 units of $M_{3} X_{2}$.

The correspondence between the polyhedra in $\mathrm{Y}_{3} \mathrm{Rh}_{2}$ and $M_{31} X_{20}$ is given below:

$$
\begin{array}{ll}
\mathrm{Y}(1) \simeq M(5-7) & \mathrm{Rh}(1) \simeq X(6) \\
\mathrm{Y}(2) \simeq M(5-7) & \mathrm{Rh}(2) \simeq X(7-8) \\
\mathrm{Y}(3) \simeq M(4) & \mathrm{Rh}(3) \simeq X(5) \\
\mathrm{Y}(4) \simeq M(2) & \mathrm{Rh}(4) \simeq X(2-4) \\
\mathrm{Y}(5) \simeq M(1) & \mathrm{Rh}(5) \simeq X(1) \\
& \mathrm{Rh}(6) \simeq X(2-4)
\end{array}
$$

References

Abrahams, S. C. (1964). Acta Cryst. 17, 1327-1328.
Busing, W. R., Ellison, R. D., Levy, H. A., King, S. P. \& Roseberry, R. T. (1968). Report 4143. Oak Ridge National Laboratory, Tennessee.
Corfield, P. W. R., Doedens, R. J. \& Ibers, J. A. (1967). Inorg. Chem. 6, 197-210.
Cromer. D. T. (1977). Acta Cryst. B33, 1993-1995.
Cromer, D. T. \& Larson, A. C. (1974). Amer. Cryst. Assoc. Spring Meeting, Berkeley CA, USA. Abstract B3.
Cromer, D. T. \& Larson, A. C. (1975). Acta Cry'st. B31, 1758-1759.
Cromer, D. T., Larson, A. C. \& Roof, R. B. (1975). Acta Crust. B 31, 1756-1757.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Cromer, D. T. \& Waber, J. T. (1974). In International Tables for X-ray Crystallography, Vol. IV. Birmingham: Kynoch Press.
Frank, F. C. \& Kasper, J. S. (1958). Acta Cryst. 11, 184190.

Furnas, T. C. (1957). Single-Crystal Orienter Instruction Manual. Milwaukee: General Electric Company.
Kutaitsev, V. I., Chebotarev, N. T., Lebedev, I. G., Andrianov, M. A., Konev, V. N. \& Menshikova, T. S. (1965). Plutonium 1965, edited by A. E. Kay \& M. B. Waldron, pp. 420-449. London: Chapman and Hall.
Larson. A. C., Roof, R. B. \& Cromer, D. T. (1964). Acta Cryst. 17, 1382-1386.
Meulenaer, J. de \& Tompa, H. (1965). Acta Cryst. 19, 1014-1018.
Moreau, J.. Paccard, D. \& Parthé, E. (1976). Acta Cryst. B32, 1767-1771.
Roof, R. B. (1976). Private communication.
Ryan, R. R. (1977). Acta Cryst. B33. To be published.

[^0]: * Work performed under the auspices of the US Energy Research and Development Administration.
 \dagger Present address: 913 Dartmoor, Austin, Texas 78746, USA.

[^1]: * Lists of the final least-squares cycle, structure factors, anisotropic thermal parameters and interatomic-distance, thermalellipsoid and polyhedron calculations for both compounds have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 32510 (115 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CHI INZ, England.

